Objective Micro-Facial Movement Detection Using FACS-Based Regions and Baseline Evaluation
نویسندگان
چکیده
Micro-facial expressions are regarded as an important human behavioural event that can highlight emotional deception. Spotting these movements is difficult for humans and machines, however research into using computer vision to detect subtle facial expressions is growing in popularity. This paper proposes an individualised baseline micro-movement detection method using 3D Histogram of Oriented Gradients (3D HOG) temporal difference method. We define a face template consisting of 26 regions based on the Facial Action Coding System (FACS). We extract the temporal features of each region using 3D HOG. Then, we use Chi-square distance to find subtle facial motion in the local regions. Finally, an automatic peak detector is used to detect micro-movements above the newly proposed adaptive baseline threshold. The performance is validated on two FACS coded datasets: SAMM and CASME II. This objective method focuses on the movement of the 26 face regions. When comparing with the ground truth, the best result was an AUC of 0.7512 and 0.7261 on SAMM and CASME II, respectively. The results show that 3D HOG outperformed for micro-movement detection, compared to state-of-the-art feature representations: Local Binary Patterns in Three Orthogonal Planes and Histograms of Oriented Optical Flow.
منابع مشابه
An Expert System for Recognition of Facial Actions and their Intensity
The Facial Action Coding System (FACS) is an objective method for quantifying facial movement in terms of 44 component actions, i.e. Action Units (AUs). This system is widely used in behavioral investigations of emotion, cognitive process and social interaction. Highly trained human experts (FACS coders) presently perform the coding. This paper presents a system that can automatically recognize...
متن کاملFacial Micro-Expression Detection in Hi-Speed Video Based on Facial Action Coding System (FACS)
Facial micro-expressions are fast and subtle facial motions that are considered as one of the most useful external signs for detecting hidden emotional changes in a person. However, they are not easy to detect and measure as they appear only for a short time, with small muscle contraction in the facial areas where salient features are not available. We propose a new computer vision method for d...
متن کاملAn Empirical Study of Dimensional Reduction Techniques for Facial Action Units Detection
Biologically inspired features, such as Gabor filters, result in very high dimensional measurement. Does reducing the dimensionality of the feature space afford advantages beyond computational efficiency? Do some approaches to dimensionality reduction (DR) yield improved action unit detection? To answer these questions, we compared DR approaches in two relatively large databases of spontaneous ...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملObjective Classes for Micro-Facial Expression Recognition
Micro-expressions are brief spontaneous facial expressions that appear on a face when a person conceals an emotion, making them different to normal facial expressions in subtlety and duration. Currently, emotion classes within the CASME II dataset are based on Action Units and self-reports, creating conflicts during machine learning training. We will show that classifying expressions using Acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.05038 شماره
صفحات -
تاریخ انتشار 2016